Impacts of Water Flow Rate on Freezing Prevention of Air-Cooled Heat Exchangers in Power Plants

ENERGIES(2018)

引用 2|浏览7
暂无评分
摘要
Under cold ambient conditions, the freezing risk of air-cooled heat exchangers, especially the frontal finned tube bundles, has been a critical concern in power plants. Based on the freezing conditions of the cooling deltas under windy conditions, the flow and heat transfer characteristics of natural draft dry cooling system (NDDCS) with 30%, 40% and 50% increased water flow rates are investigated in this work, and the outlet circulating water temperatures of the easily freezing cooling deltas and sectors are obtained. The results show that the deltas in the middle front and rear sectors become free from freezing at all wind speeds when the circulating water flow rate is increased. For the frontal sector with increased water flow rate, the outlet water temperatures of deltas increase conspicuously at 4 m/s and 8 m/s, while as the wind speed rises to 16 m/s, these deltas still face serious freezing risks due to the huge heat rejection to ambient air. Therefore, freezing prevention of air-cooled NDDCS heat exchangers can be achieved by increasing the water flow rates at small wind speeds, while as the wind speed becomes high, the water flow redistribution is suggested for the frontal and middle sectors due to their big performance difference.
更多
查看译文
关键词
NDDCS air-cooled heat exchanger,cooling delta,anti-freezing,water flow rate,outlet water temperature
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要