Relating Magnetic Properties and High Hyperthermia Performance of Iron Oxide Nanoflowers

JOURNAL OF PHYSICAL CHEMISTRY C(2018)

Cited 97|Views26
No score
Abstract
We investigated, in depth, the interrelations among structure, magnetic properties, relaxation dynamics and magnetic hyperthermia performance of magnetic nanoflowers. The nanoflowers are about 39 nm in size, and consist of densely packed iron oxide cores. They display a remanent magnetization, which we explain by the exchange coupling between the cores, but we observe indications for internal spin disorder. By polarized small-angle neutron scattering, we unambiguously confirm that, on average, the nano flowers are preferentially magnetized along one direction. The extracted discrete relaxation time distribution of the colloidally dispersed particles indicates the presence of three distinct relaxation contributions. We can explain the two slower processes by Brownian and classical Neel relaxation, respectively. The additionally observed very fast relaxation contributions are attributed by us to the relaxation of disordered spins within the nanoflowers. Finally, we show that the intrinsic loss power (ILP, magnetic hyperthermia performance) of the nanoflowers measured in colloidal dispersion at high frequency is comparatively large and independent of the viscosity of the surrounding medium. This concurs with our assumption that the observed relaxation in the high frequency range is primarily a result of internal spin relaxation, and possibly connected to the disordered spins within the individual nanoflowers.
More
Translated text
Key words
high hyperthermia performance,magnetic properties,iron
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined