High-mass star formation through filamentary collapse and clump-fed accretion in G22

ASTROPHYSICAL JOURNAL(2018)

引用 54|浏览12
暂无评分
摘要
How mass is accumulated from cloud-scale down to individual stars is a key open question in understanding highmass star formation. Here, we present the mass accumulation process in a hub-filament cloud G22 that is composed of four supercritical filaments. Velocity gradients detected along three filaments indicate that they are collapsing with a total mass infall rate of about 440M(circle dot) Myr(-1), suggesting the hub mass would be doubled in six free-fall times, adding up to similar to 2 Myr. A fraction of the masses in the central clumps C1 and C2 can be accounted for through large-scale filamentary collapse. Ubiquitous blue profiles in HCO+. (3-2) and (CO)-C-13. (3-2) spectra suggest a clump-scale collapse scenario in the most massive and densest clump C1. The estimated infall velocity and mass infall rate are 0.31 km s(-1) and 7.2 x. 10(-4)M(circle dot) yr(-1), respectively. In clump C1, a hot molecular core (SMA1) is revealed by the Submillimeter Array observations and an outflow-driving high-mass protostar is located at the center of SMA1. The mass of the protostar is estimated to be 11-15M(circle dot) and it is still growing with an accretion rate of 7 x. 10(-5)M(circle dot) yr(-1). The coexistent infall in filaments, clump C1, and the central hot core in G22 suggests that pre-assembled mass reservoirs (i.e., high-mass starless cores) may not be required to form high-mass stars. In the course of high-mass star formation, the central protostar, the core, and the clump can simultaneously grow in mass via core-fed/disk accretion, clump-fed accretion, and filamentary/cloud collapse.
更多
查看译文
关键词
ISM: clouds,ISM: individual objects (G22),ISM: kinematics and dynamics,stars: formation,stars: massive
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要