Tunneling Spectroscopy of Quantum Hall States in Bilayer Graphene p-n Junctions.

arXiv: Mesoscale and Nanoscale Physics(2019)

引用 23|浏览4
暂无评分
摘要
We report tunneling transport in spatially controlled networks of quantum Hall (QH) edge states in bilayer graphene. By manipulating the separation, location, and spatial span of QH edge states via gate-defined electrostatics, we observe resonant tunneling between copropagating QH states across incompressible strips. Employing spectroscopic tunneling measurements and an analytical model, we characterize the energy gap, width, density of states, and compressibility of the QH edge states with high precision and sensitivity within the same device. The capability to engineer the QH edge network also provides an opportunity to build future quantum electronic devices with electrostatic manipulation of QH edge states, supported by rich underlying physics.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要