谷歌Chrome浏览器插件
订阅小程序
在清言上使用

Combining radiomics and mathematical modeling to elucidate mechanisms of resistance to immune checkpoint blockade in non-small cell lung cancer

bioRxiv(2017)

引用 8|浏览16
暂无评分
摘要
Immune therapies have shown promise in a number of cancers, and clinical trials using the anti-PD-L1/PD-1 checkpoint inhibitor in lung cancer have been successful for a number of patients. However, some patients either do not respond to the treatment or have cancer recurrence after an initial response. It is not clear which patients might fall into these categories or what mechanisms are responsible for treatment failure. To explore the different underlying biological mechanisms of resistance, we created a spatially explicit mathematical model with a modular framework. This construction enables different potential mechanisms to be turned on and off in order to adjust specific tumor and tissue interactions to match a specific patient9s disease. In parallel, we developed a software suite to identify significant computed tomography (CT) imaging features correlated with outcome using data from an anti-PDL-1 checkpoint inhibitor clinical trial for lung cancer and a tool that extracts these features from both patient images and virtual CT images created from the cellular density profile of the model. The combination of our two toolkits provides a framework that feeds patient data through an iterative pipeline to identify predictive imaging features associated with outcome, whilst at the same time proposing hypotheses about the underlying resistance mechanisms.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要