Germline loss of MBD4 predisposes to leukaemia due to a mutagenic cascade driven by 5mC

bioRxiv(2017)

引用 4|浏览57
暂无评分
摘要
Cytosine methylation is essential for normal mammalian development, yet also provides a major mutagenic stimulus. Methylcytosine (5mC) is prone to spontaneous deamination, which introduces cytosine to thymine transition mutations (Cu003eT) upon replication. Cells endure hundreds of 5mC deamination events each day and an intricate repair network is engaged to restrict this damage. Central to this network are the DNA glycosylases MBD4 and TDG, which recognise T:G mispairing and initiate base excision repair (BER). Here we describe a novel cancer predisposition syndrome resulting from germline biallelic inactivation of MBD4 that leads to the development of acute myeloid leukaemia (AML). These leukaemias have an extremely high burden of Cu003eT mutations, specifically in the context of methylated CG dinucleotides (CGu003eTG). This dependence on 5mC as a source of mutations may explain the remarkable observation that MBD4-deficient AMLs share a common set of driver mutations, including biallelic mutations in DNMT3A and hotspot mutations in IDH1/IDH2. By assessing serial samples taken over the course of treatment, we highlight a critical interaction with somatic mutations in DNMT3A that accelerates leukaemogenesis and accounts for the conserved path to AML. MBD4-deficiency was also detected, rarely, in sporadic cancers, which display the same mutational signature. Collectively these cancers provide a model of 5mC-dependent hypermutation and reveal factors that shape its mutagenic influence.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要