Seismic induced damage detection through parallel estimation of force and parameter using improved interacting Particle-Kalman filter

Structural Health Monitoring-an International Journal(2017)

引用 0|浏览2
暂无评分
摘要
Standard filtering techniques for structural parameter estimation assume that the input force either is known exactly or can be replicated using a known white Gaussian model. Unfortunately for structures subjected to seismic excitation, the input time history is unknown and also no previously known representative model is available. This invalidates the aforementioned idealization. To identify seismic induced damage in such structures using filtering techniques, a novel algorithm is proposed to estimate the force as additional state in parallel to the system parameters. Two concurrent filters are employed for parameters and force respectively. For the parameters, interacting Particle-Kalman filter [1] is employed targeting systems with correlated noise. Alongside a second filter is employed to estimate the seismic force acting on the structure. The proposal is numerically validated on a sixteen degrees-of-freedom mass-spring-damper system. The estimation results confirm the applicability of the proposed algorithm.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要