The issue of gauge choice in the Landau problem and the physics of canonical and mechanical orbital angular momenta

Annals of Physics(2018)

引用 26|浏览5
暂无评分
摘要
One intriguing issue in the nucleon spin decomposition problem is the existence of two types of decompositions, which are representably characterized by two different orbital angular momenta (OAMs) of quarks. The one is the mechanical OAM, while the other is the so-called gauge-invariant canonical (g.i.c.) OAM, the concept of which was introduced by Chen et al. An especially delicate quantity is the g.i.c. OAM, which must be distinguished from the ordinary (gauge-variant) canonical OAM. We find that, owing to its analytically solvable nature, the famous Landau problem offers an ideal tool to understand the difference and the physical meaning of the above three OAMs, i.e. the standard canonical OAM, g.i.c. OAM, and the mechanical OAM. We analyze these three OAMs in two different formulations of the Landau problem, first in the standard (gauge-fixed) formulation and second in the gauge-invariant (but path-dependent) formulation of DeWitt. Especially interesting is the latter formalism. It is shown that the choice of path has an intimate connection with the choice of gauge, but they are not necessarily equivalent. Then, we answer the question about what is the consequence of a particular choice of path in DeWitt’s formalism. This analysis also clarifies the implication of the gauge symmetry hidden in the concept of g.i.c. OAM. Finally, we show that the finding above offers a clear understanding about the uniqueness or non-uniqueness problem of the nucleon spin decomposition, which arises from the arbitrariness in the definition of the so-called physical component of the gauge field.
更多
查看译文
关键词
Landau problem,Gauge choice,Gauge-invariant formulation,Path dependence,Orbital angular momenta,Nucleon spin decomposition
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要