Self-Supervised Vessel Segmentation via Adversarial Learning.

ICCV(2021)

引用 47|浏览244
暂无评分
摘要
Vessel segmentation is critically essential for diagnosinga series of diseases, e.g., coronary artery disease and retinal disease. However, annotating vessel segmentation maps of medical images is notoriously challenging due to the tiny and complex vessel structures, leading to insufficient available annotated datasets for existing supervised methods and domain adaptation methods. The subtle structures and confusing background of medical images further suppress the efficacy of unsupervised methods. In this paper, we propose a self-supervised vessel segmentation method via adversarial learning. Our method learns vessel representations by training an attention-guided generator and a segmentation generator to simultaneously synthesize fake vessels and segment vessels out of coronary angiograms. To support the research, we also build the first X-ray angiography coronary vessel segmentation dataset, named XCAD. We evaluate our method extensively on multiple vessel segmentation datasets, including the XCAD dataset, the DRIVE dataset,and the STARE dataset. The experimental results show our method suppresses unsupervised methods significantly and achieves competitive performance compared with supervised methods and traditional methods.
更多
查看译文
关键词
Segmentation,grouping and shape,Adversarial learning,Image and video synthesis,Medical,biological,and cell microscopy,Representation learning,Transfer/Low-shot/Semi/Unsupervised Learning
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要