Untangling Sequences: Behavior vs. External Causes

bioRxiv(2017)

引用 4|浏览27
暂无评分
摘要
There are two fundamental reasons why sensory inputs to the brain change over time. Sensory inputs can change due to external factors or they can change due to our own behavior. Interpreting behavior-generated changes requires knowledge of how the body is moving, whereas interpreting externally-generated changes relies solely on the temporal sequence of input patterns. The sensory signals entering the neocortex change due to a mixture of both behavior and external factors. The neocortex must disentangle them but the mechanisms are unknown. In this paper, we show that a single neural mechanism can learn and recognize both types of sequences. In the model, cells are driven by feedforward sensory input and are modulated by contextual input. If the contextual input includes information derived from efference motor copies, the cells learn sensorimotor sequences. If the contextual input consists of nearby cellular activity, the cells learn temporal sequences. Through simulation we show that a network containing both types of contextual input automatically separates and learns both types of input patterns. We review experimental data that suggests the upper layers of cortical regions contain the anatomical structure required to support this mechanism.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要