Ephemeris Corrections in Celestial/Pulsar Navigation Using Time Differential and Ephemeris Estimation

JOURNAL OF GUIDANCE CONTROL AND DYNAMICS(2018)

Cited 9|Views2
No score
Abstract
No AccessEngineering NoteEphemeris Corrections in Celestial/Pulsar Navigation Using Time Differential and Ephemeris EstimationXiaolin Ning, Yuqing Yang, Zhuo Li, Mingzhen Gui and Jiancheng FangXiaolin NingBeihang University (BUAA), 100191 Beijing, People’s Republic of China*Associate Professor, School of Instrumentation Science and Opto-Electronics Engineering.Search for more papers by this author, Yuqing YangBeihang University (BUAA), 100191 Beijing, People’s Republic of China†Student, School of Instrumentation Science and Opto-Electronics Engineering; (Corresponding Author).Search for more papers by this author, Zhuo LiBeihang University (BUAA), 100191 Beijing, People’s Republic of China†Student, School of Instrumentation Science and Opto-Electronics Engineering; (Corresponding Author).Search for more papers by this author, Mingzhen GuiBeihang University (BUAA), 100191 Beijing, People’s Republic of China†Student, School of Instrumentation Science and Opto-Electronics Engineering; (Corresponding Author).Search for more papers by this author and Jiancheng FangBeihang University (BUAA), 100191 Beijing, People’s Republic of China‡Professor, School of Instrumentation Science and Opto-Electronics Engineering.Search for more papers by this authorPublished Online:6 Sep 2017https://doi.org/10.2514/1.G002711SectionsRead Now ToolsAdd to favoritesDownload citationTrack citations ShareShare onFacebookTwitterLinked InRedditEmail About References [1] Xu F. and Fang J. C., “Velocity and Position Error Compensation Using Strapdown Inertial Navigation System/Celestial Navigation System Integration Based on Ensemble Neural Network,” Aerospace Science & Technology, Vol. 12, No. 4, 2008, pp. 302–307. doi:https://doi.org/10.1016/j.ast.2007.08.005 CrossrefGoogle Scholar[2] Ma P. B., Jiang F. H. and Bao Y., “Autonomous Navigation of Mars Probes by Combining Optical Data of Viewing Martian Moons and SST Data,” Journal of Navigation, Vol. 68, No. 6, 2015, pp. 1019–1040. doi:https://doi.org/10.1017/S0373463315000272 JONVAL 0373-4633 CrossrefGoogle Scholar[3] Sheikh S. I., Pines D. J., Ray P. S., Wood K. S., Lovellette M. N. and Wolff M. T., “Spacecraft Navigation Using X-Ray Pulsars,” Journal of Guidance Control & Dynamics, Vol. 29, No. 1, 2006, pp. 49–63. doi:https://doi.org/10.2514/1.13331 LinkGoogle Scholar[4] Liu J., Fang J. C., Kang Z. W. and Wu J., “Novel Algorithm for X-Ray Pulsar Navigation Against Doppler Effects,” IEEE Transactions on Aerospace & Electronic Systems, Vol. 51, No. 1, 2015, pp. 228–241. doi:https://doi.org/10.1109/TAES.2014.130463 CrossrefGoogle Scholar[5] Rourke K. H., Acton C. H., Breckenridge W. G., Campbell J. K., Christensen C. S., Donegan A. J., Jerath N., Mottinger N. A., Rinker G. C. and Winn F. B., “The Determination of the Interplanetary Orbits of Vikings 1 and 2,” 15th Aerospace Sciences Meeting, AIAA Paper 1977-0071, 1977. LinkGoogle Scholar[6] Synnott S. P., Donegan A. J., Riedel J. E. and Stuve J. A., “Interplanetary Optical Navigation—Voyager Uranus Encounter,” Astrodynamics Conference, AIAA Paper 1986-2113, 1986. LinkGoogle Scholar[7] Duxbury T. C., Born G. H. and Jerath N., “Viewing Phobos and Deimos for Navigating Mariner 9,” Journal of Spacecraft & Rockets, Vol. 11, No. 4, 1974, pp. 215–222. doi:https://doi.org/10.2514/3.62046 LinkGoogle Scholar[8] Christian J. A., “Optical Navigation Using Planet’s Centroid and Apparent Diameter in Image,” Journal of Guidance Control & Dynamics, Vol. 38, No. 2, 2015, pp. 192–204. doi:https://doi.org/10.2514/1.G000872 LinkGoogle Scholar[9] Ning X. L., Li Z., Yang Y. Q., Fang J. C. and Liu G., “Analysis of Ephemeris Errors in Autonomous Celestial Navigation During Mars Approach Phase,” Journal of Navigation, Vol. 70, No. 3, 2017, pp. 505–526. doi:https://doi.org/10.1017/S0373463316000734 JONVAL 0373-4633 CrossrefGoogle Scholar[10] Jacobson R. A. and Lainey V., “Martian Satellite Orbits and Ephemerides,” Planetary & Space Science, Vol. 102, Nov. 2014, pp. 35–44. doi:https://doi.org/10.1016/j.pss.2013.06.003 CrossrefGoogle Scholar[11] Jacobson R. A., “The Orbits and Masses of the Martian Satellites and the Libration of Phobos,” Astronomical Journal, Vol. 139, No. 2, 2010, pp. 668–679. doi:https://doi.org/10.1088/0004-6256/139/2/668 ANJOAA 0004-6256 CrossrefGoogle Scholar[12] Ma X., Fang J., Ning X., Liu G. and Ye H., “A Radio/Optical Integrated Navigation Method Based on Ephemeris Correction for an Interplanetary Probe to Approach a Target Planet,” Journal of Navigation, Vol. 69, No. 3, 2016, pp. 613–638. doi:https://doi.org/10.1017/S0373463315000818 JONVAL 0373-4633 CrossrefGoogle Scholar[13] Kai X., Wei C. L. and Liu L. D., “The Use of X-Ray Pulsars for Aiding Navigation of Satellites in Constellations,” Acta Astronautica, Vol. 64, No. 4, 2009, pp. 427–436. doi:https://doi.org/10.1016/j.actaastro.2008.09.005 AASTCF 0094-5765 CrossrefGoogle Scholar[14] Liu J., Ma J., Tian J. W., Kang Z. W. and White P., “X-Ray Pulsar Navigation Method for Spacecraft with Pulsar Direction Error,” Advances in Space Research, Vol. 46, No. 11, 2010, pp. 1409–1417. doi:https://doi.org/10.1016/j.asr.2010.08.019 ASRSDW 0273-1177 CrossrefGoogle Scholar[15] Wang Y. D., Zheng W., Sun S. and Li L., “X-Ray Pulsar-Based Navigation Using Time-Differenced Measurement,” Aerospace Science & Technology, Vol. 36, July 2014, pp. 27–35. doi:https://doi.org/10.1016/j.ast.2014.03.007 CrossrefGoogle Scholar[16] Liu J., Ma J. and Tian J. W., “Pulsar/CNS Integrated Navigation Based on Federated UKF,” Journal of Systems Engineering and Electronics, Vol. 21, No. 4, 2010, pp. 675–681. doi:https://doi.org/10.3969/j.issn.1004-4132.2010.04.022 CrossrefGoogle Scholar[17] Jiao R., Xu L. P., Hua Z. and Li C., “Augmentation Method of XPNAV in Mars Orbit Based on Phobos and Deimos Observations,” Advances in Space Research, Vol. 58, No. 9, 2016, pp. 1864–1878. doi:https://doi.org/10.1016/j.asr.2016.07.021 ASRSDW 0273-1177 CrossrefGoogle Scholar[18] Ning X., Gui M., Fang J. and Liu G., “Differential X-Ray Pulsar Aided Celestial Navigation for Mars Exploration,” Aerospace Science & Technology, Vol. 62, March 2017, pp. 36–45. doi:https://doi.org/10.1016/j.ast.2016.10.032 CrossrefGoogle Scholar[19] Sheikh S. I., “The Use of Variable Celestial X-Ray Sources for Spacecraft Navigation,” Ph.D. Dissertation, Aerospace Engineering Dept., Univ. of Maryland, College Park, MD, 2005. Google Scholar[20] Graf J. E., Zurek R. W., Eisen H. J., Jai B., Johnston M. D. and Depaula R., “The Mars Reconnaissance Orbiter Mission,” Acta Astronautica, Vol. 57, Nos. 2–8, 2007, pp. 1–19. doi:https://doi.org/10.1016/j.actaastro.2005.03.043 AASTCF 0094-5765 Google Scholar[21] Stauder J. L. and Lowman A. E., “Off-Axis Scatter Measurement of the Mars Reconnaissance Orbiter (MRO) Optical Navigation Camera (ONC),” Current Developments in Lens Design and Optical Engineering VI, Proceedings of SPIE, Vol. 5874, San Diego, CA, 2005, Paper 58740L. doi:https://doi.org/10.1117/12.619857 CrossrefGoogle Scholar[22] Canisius F. and Fernandes R., “Evaluation of the Information Content of Medium Resolution Imaging Spectrometer (MERIS) Data for Regional Leaf Area Index Assessment,” Remote Sensing of Environment, Vol. 119, April 2012, pp. 301–314. doi:https://doi.org/10.1016/j.rse.2011.10.013 RSEEA7 0034-4257 CrossrefGoogle Scholar Previous article Next article FiguresReferencesRelatedDetailsCited byDistributed satellite autonomous navigation using X-ray pulsarsAdvances in Space Research, Vol. 71, No. 6Review of X-ray pulsar spacecraft autonomous navigationChinese Journal of Aeronautics, Vol. 7Variational Bayesian implicit unscented Kalman filter for celestial navigation using time delay measurementAdvances in Space Research, Vol. 71, No. 1Effect of Ephemeris on Pulsar Timing and Navigation Accuracy Based on X-ray Pulsar Navigation-I Data27 June 2022 | Universe, Vol. 8, No. 7A real-time optimization control method for coagulation process during drinking water treatment21 August 2021 | Nonlinear Dynamics, Vol. 126A Time Delay/Star Angle Integrated Navigation Method Based on the Event-Triggered Implicit Unscented Kalman FilterIEEE Transactions on Instrumentation and Measurement, Vol. 70Disturbance Observer-Based Neural Network Control of Cooperative Multiple Manipulators With Input SaturationIEEE Transactions on Neural Networks and Learning Systems, Vol. 31, No. 5Comparative study on autonomous navigation for Mars cruise probe based on observability analysisJournal of Astronomical Telescopes, Instruments, and Systems, Vol. 4, No. 04 What's Popular Volume 41, Number 1January 2018Special Section on Space Domain Awareness CrossmarkInformationCopyright © 2017 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved. All requests for copying and permission to reprint should be submitted to CCC at www.copyright.com; employ the ISSN 0731-5090 (print) or 1533-3884 (online) to initiate your request. See also AIAA Rights and Permissions www.aiaa.org/randp. TopicsAir NavigationAvionicsCelestial NavigationControl TheoryGuidance, Navigation, and Control SystemsIntegrated CircuitsKalman FilterNavigational GuidancePlanetary Science and ExplorationPlanetsRadio NavigationSemiconductor DevicesSolar System MoonsSpace MissionsSpace Science and Technology KeywordsCelestial NavigationDeimosEarthSatellitesUnscented Kalman FilterMars ExplorationSolar SystemNavigation PerformanceCharge Coupled DeviceAstronomical UnitAcknowledgmentsThe research presented in this paper was supported by the National Natural Science Foundation of China (61233005, 61503013) and the grant of the National Basic Research Program of China (973 Program 2014CB744206). The authors wish to express their gratitude to all members of the Science and Technology on Inertial Laboratory and Fundamental Science on Novel Inertial Instrument and Navigation System Technology Laboratory for their valuable comments.PDF Received28 December 2016Accepted23 June 2017Published online6 September 2017
More
Translated text
Key words
celestial/pulsar navigation,time differential,estimation
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined