Dynamics and Failure Models for a V-Tail Remotely Piloted Aircraft System

JOURNAL OF GUIDANCE CONTROL AND DYNAMICS(2018)

引用 5|浏览0
暂无评分
摘要
No AccessEngineering NoteDynamics and Failure Models for a V-Tail Remotely Piloted Aircraft SystemLuis García-Hernández, Cristina Cuerno-Rejado and Manuel Pérez-CortésLuis García-HernándezTechnical University of Madrid, 28040 Madrid, Spain*M.S. Aeronautical Engineer, Department of Aircraft and Spacecraft, Plaza Cardenal Cisneros, Number 3; .Search for more papers by this author, Cristina Cuerno-RejadoTechnical University of Madrid, 28040 Madrid, Spain†Full Professor Aeronautical Engineer, Department of Aircraft and Spacecraft, Plaza Cardenal Cisneros, Number 3; .Search for more papers by this author and Manuel Pérez-CortésTechnical University of Madrid, 28040 Madrid, Spain‡Professor Aeronautical Engineer, Department of Aircraft and Spacecraft, Plaza Cardenal Cisneros, Number 3; .Search for more papers by this authorPublished Online:6 Sep 2017https://doi.org/10.2514/1.G003069SectionsRead Now ToolsAdd to favoritesDownload citationTrack citations ShareShare onFacebookTwitterLinked InRedditEmail About References [1] Boskovic J. D. and Mehra R. K., “Stable Multiple Model Adaptive Flight Control for Accommodation of a Large Class of Control Effector Failures,” Proceedings of the 1999 American Control Conference (Cat. No. 99CH36251), Vol. 3, IEEE Publ., Piscataway, NJ, 1999, pp. 1920–1924. doi:https://doi.org/10.1109/ACC.1999.786187 Google Scholar[2] Boskovic J. D., Bergstrom S. E., Mehra R. K., Urnes J. M., Hood M. and Lin Y., “Fast On-Line Actuator Reconfiguration Enabling (FLARE) System,” AIAA Guidance, Navigation, and Control Conference and Exhibit, AIAA Paper 2005-6339, 2005. doi:https://doi.org/10.2514/6.2005-6339 LinkGoogle Scholar[3] Tanaka N., Suzuki S., Masui K. and Tomita H., “Restructurable Guidance and Control for Aircraft with Failures Considering Gust Effects,” Journal of Guidance, Control, and Dynamics, Vol. 29, No. 3, 2006, pp. 671–679. doi:https://doi.org/10.2514/1.15680 JGCODS 0731-5090 LinkGoogle Scholar[4] Bateman F., Noura H. and Ouladsine M., “Actuators Fault Diagnosis and Tolerant Control for an Unmanned Aerial Vehicle,” IEEE International Conference on Control Applications, IEEE Publ., Piscataway, NJ, 2007, pp. 1061–1066. doi:https://doi.org/10.1109/CCA.2007.4389374 Google Scholar[5] Alwi H., Edwards C., Stroosma O. and Mulder J. A., “Fault Tolerant Sliding Mode Control Design with Piloted Simulator Evaluation,” Journal of Guidance, Control, and Dynamics, Vol. 31, No. 5, 2008, pp. 1186–1201. doi:https://doi.org/10.2514/1.35066 JGCODS 0731-5090 LinkGoogle Scholar[6] Alwi H. and Edwards C., “Fault Detection and Fault-Tolerant Control of a Civil Aircraft Using a Sliding-Mode-Based Scheme,” IEEE Transactions on Control Systems Technology, Vol. 16, No. 3, 2008, pp. 499–510. doi:https://doi.org/10.1109/TCST.2007.906311 IETTE2 1063-6536 CrossrefGoogle Scholar[7] Ducard G. and Geering H. P., “Efficient Nonlinear Actuator Fault Detection and Isolation System for Unmanned Aerial Vehicles,” Journal of Guidance, Control, and Dynamics, Vol. 31, No. 1, 2008, pp. 225–237. doi:https://doi.org/10.2514/1.31693 JGCODS 0731-5090 LinkGoogle Scholar[8] Hallouzi R. and Verhaegen M., “Fault-Tolerant Subspace Predictive Control Applied to a Boeing 747 Model,” Journal of Guidance, Control, and Dynamics, Vol. 31, No. 4, 2008, pp. 873–883. doi:https://doi.org/10.2514/1.33256 JGCODS 0731-5090 LinkGoogle Scholar[9] Liu Y., Tang X., Tao G. and Joshi S. M., “Adaptive Compensation of Aircraft Actuation Failures Using an Engine Differential Model,” IEEE Transactions on Control Systems Technology, Vol. 16, No. 5, 2008, pp. 971–982. doi:https://doi.org/10.1109/TCST.2007.906273 IETTE2 1063-6536 CrossrefGoogle Scholar[10] Lombaerts T. J. J., Huisman H. O., Chu Q. P., Mulder J. A. and Joosten D. A., “Nonlinear Reconfiguring Flight Control Based on Online Physical Model Identification,” Journal of Guidance, Control, and Dynamics, Vol. 32, No. 3, 2009, pp. 727–748. doi:https://doi.org/10.2514/1.40788 JGCODS 0731-5090 LinkGoogle Scholar[11] Lombaerts T., Van Oort E. R., Chu Q. P., Mulder J. A. and Joosten D., “Online Aerodynamic Model Structure Selection and Parameter Estimation for Fault-Tolerant Control,” Journal of Guidance, Control, and Dynamics, Vol. 33, No. 3, 2010, pp. 707–723. doi:https://doi.org/10.2514/1.47256 JGCODS 0731-5090 LinkGoogle Scholar[12] Brinker J. S. and Wise K. A., “Reconfigurable Flight Control for a Tailless Advanced Fighter Aircraft,” Guidance, Navigation and Control Conference and Exhibit, AIAA Paper 1998-4107, 1998. doi:https://doi.org/10.2514/6.1998-4107 LinkGoogle Scholar[13] Chowdhary G., Johnson E. N., Chandramohan R., Kimbrell M. S. and Calise A., “Autonomous Guidance and Control of Airplanes Under Actuator Failures and Severe Structural Damage,” Journal of Guidance, Control, and Dynamics, Vol. 36, No. 4, 2013, pp. 1093–1104. doi:https://doi.org/10.2514/1.58028 JGCODS 0731-5090 LinkGoogle Scholar[14] Dlamini Z. and Jones T., “Fly-by-Wire Robustness to Flight Dynamics Change Under Horizontal Stabiliser Damage,” Aeronautical Journal, Vol. 120, No. 1228, 2016, pp. 1005–1023. doi:https://doi.org/10.1017/aer.2016.42 AENJAK 0001-9240 CrossrefGoogle Scholar[15] Li X. and Liu H. H. T., “A Passive Fault Tolerant Flight Control for Maximum Allowable Vertical Tail Damaged Aircraft,” Journal of Dynamic Systems, Measurement, and Control, Vol. 134, No. 3, 2012, Paper 031006. doi:https://doi.org/10.1115/1.4005512 JDSMAA 0022-0434 CrossrefGoogle Scholar[16] Wang J., Wang S., Wang X., Shi C. and Tomovic M. M., “Active Fault Tolerant Control for Vertical Tail Damaged Aircraft with Dissimilar Redundant Actuation System,” Chinese Journal of Aeronautics, Vol. 29, No. 5, 2016, pp. 1313–1325. doi:https://doi.org/10.1016/j.cja.2016.08.009 CJAEEZ 1000-9361 CrossrefGoogle Scholar[17] Purser P. E. and Campbell J. P., “Experimental Verification of a Simplified Vee-Tail Theory and Analysis of Available Data on Complete Models with Vee-Tails,” NACA Rept. 823, Washington, D.C., 1944. Google Scholar[18] Polhamus E. C. and Moss R. J., “Wind-Tunnel Investigation of the Stability and Control Characteristics of a Complete Model Equipped with a Vee Tail,” NACA Rept. 1478, Washington, D.C., 1947. Google Scholar[19] Schade R. O., “Effect of Geometric Dihedral on the Aerodynamic Characteristics of Two Isolated Vee-Tail Surfaces,” NACA Rept. 1369, Washington, D.C., 1947. Google Scholar[20] Phillips W. F., Hansen A. B. and Nelson W. M., “Effects of Tail Dihedral on Static Stability,” Journal of Aircraft, Vol. 43, No. 6, 2006, pp. 1829–1837. doi:https://doi.org/10.2514/1.20683 LinkGoogle Scholar[21] Zhang G. Q., Yu S. C. M., Chien A. and Xu Y., “Investigation of the Tail Dihedral Effects on the Aerodynamic Characteristics for the Low Speed Aircraft,” Advances in Mechanical Engineering, Vol. 5, Jan. 2013, pp. 1–12. doi:https://doi.org/10.1155/2013/308582 CrossrefGoogle Scholar[22] Roskam J., Airplane Design: Part 6, DARcorporation, Lawrence, KS, 1987. Google Scholar[23] Roskam J., Methods for Estimating Stability and Control Derivatives of Conventional Subsonic Airplanes, Roskam, Lawrence, KS, 1973. Google Scholar[24] “ATLANTE: Tactical Fixed Wing Multirole UAS for Maximized Operational Capability and Mission Flexibility,” Airbus Defense, and Space, Madrid, Spain, 2014, pp. 1–2. Google Scholar[25] “ATLANTE: Tactical Unmanned Aerial System for National Security,” Cassidian, Madrid, Spain, 2014, pp. 1–2. Google Scholar[26] USAF Stability and Control Digital DATCOM, McDonell Douglas Corp. (Douglas Aircraft Division), Wright–Patterson AFB, OH, 1979. Google Scholar[27] Torenbeek E., Synthesis of Subsonic Airplane Design, Springer Science and Business Media, New York, 1976. CrossrefGoogle Scholar[28] “Propeller-Efficiency Charts for Light Airplanes,” NACA Rept. 1338, Washington, D.C., 1947. Google Scholar[29] Nicolai L. M. and Carichner G. E., Fundamentals of Aircraft and Airship Design: Volume I—Aircraft Design, AIAA, Reston, VA, 2010. LinkGoogle Scholar[30] Raymer D., Aircraft Design: A Conceptual Approach, AIAA, Reston, VA, 1999. Google Scholar[31] Nicolosi F., Della Vecchia P. and Ciliberti D., “An Investigation on Vertical Tailplane Contribution to Aircraft Sideforce,” Aerospace Science and Technology, Vol. 28, No. 1, 2013, pp. 401–416. doi:https://doi.org/10.1016/j.ast.2012.12.006 CrossrefGoogle Scholar[32] Siddiqui B. A. and Khushnood A., “Improving USAF DATCOM Predictions of Aircraft Nonlinear Aerodynamics,” Canadian Aeronautics and Space Institute AERO’09 Conference, Aerodynamics Symposium, Canadian Aeronautics and Space Inst., 2009, pp. 1–11. Google Scholar[33] Blake W. B., “Prediction of Fighter Aircraft Dynamic Derivatives Using Digital Datcom,” AlAA Third Applied Aerodynamics Conference, AIAA, New York, 1985, pp. 1–8. Google Scholar[34] Siddiqui B. A., Kassem A. H. and Al-Garni A. Z., “Using USAF DATCOM to Predict Nonlinear Aerodynamics of Structurally Impaired Aircraft,” International Review of Aerospace Engineering, AIAA Paper 2009-6047, Feb. 2010. doi:https://doi.org/10.2514/6.2009-6047 Google Scholar Previous article Next article FiguresReferencesRelatedDetailsCited byOn the Extrapolation of Stability Derivatives to Combined Changes in Airspeed and Angles of Attack and Sideslip3 May 2022 | Aerospace, Vol. 9, No. 5Design Process and Environmental Impact of Unconventional Tail Airliners28 June 2021 | Aerospace, Vol. 8, No. 7Vee-tail conceptual design criteria for commercial transport aeroplanesChinese Journal of Aeronautics, Vol. 32, No. 3 What's Popular Volume 41, Number 2February 2018 CrossmarkInformationCopyright © 2017 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved. All requests for copying and permission to reprint should be submitted to CCC at www.copyright.com; employ the ISSN 0731-5090 (print) or 1533-3884 (online) to initiate your request. See also AIAA Rights and Permissions www.aiaa.org/randp. TopicsAeronauticsAircraft Components and StructureAircraft DesignAircraft Operations and TechnologyAircraft Stability and ControlAircraft Tail ConfigurationAircraft Wing DesignAircraftsAviationFlight Control SurfacesFlight TrainingFlying QualitiesLongitudinal Static StabilityMilitary AircraftMilitary AviationUnmanned Aerial Vehicle KeywordsV TailRemotely Piloted Aircraft SystemAerodynamic ConfigurationsControl SurfacesAerodynamic EfficiencyAir VehicleWind Tunnel TestsAngle of SideslipLanding GearTrue AirspeedAcknowledgmentThis work is partly supported by the company Grupo Mecánica del Vuelo.PDF Received26 May 2017Accepted24 July 2017Published online6 September 2017
更多
查看译文
关键词
aircraft,failure models,v-tail
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要