Multispectral Mid-Infrared Light Emitting Diodes On A Gaas Substrate

APPLIED PHYSICS LETTERS(2017)

引用 17|浏览49
暂无评分
摘要
We have designed, simulated, and experimentally demonstrated four-colour mid-infrared (mid-IR) Light Emitting Diodes (LEDs) integrated monolithically into a vertical structure on a semi-insulating GaAs substrate. In order to finely control the peak wavelength of the emitted mid-IR light, quantum well (QW) structures based on AlInSb/InSb/AlInSb are employed. The completed device structure consists of three p-QW-n diodes with different well widths stacked on top of one bulk AlInSb p-i-n diode. The epitaxial layers comprising the device are designed in such a way that one contact layer is shared between two LEDs. The design of the heterostructure realising the multispectral LEDs was aided by numerical modelling, and good agreement is observed between the simulated and experimental results. Electro-Luminescence measurements, carried out at room temperature, confirm that the emission of each LED peaks at a different wavelength. Peak wavelengths of 3.40 mu m, 3.50 mu m, 3.95 mu m, and 4.18 mu m are observed in the bulk, 2 nm, 4 nm, and 6 nm quantum well LEDs, respectively. Under zero bias, Fourier Transform Infrared photo-response measurements indicate that these fabricated diodes can also be operated as mid-IR photodetectors with an extended cut-off wavelength up to 4.6 mu m. (C) 2017 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要