Comparative studies of the cage systems ThFe2Al10 and UFe2Al10

JOURNAL OF ALLOYS AND COMPOUNDS(2017)

引用 3|浏览14
暂无评分
摘要
We have grown single crystals of ThFe2Al10 and used them for the refinement of its crystal structure. From the specific heat data, we determined the phonon components, that is, the Debye and Einstein modes, for Th-and U-based isostructural aluminides. To approximate the Sommerfeld coefficients, we had to include the T(3)lnT term characteristic of spin-fluctuations originating from the Fe-sublattice. The roughly estimated spin-fluctuation temperature is about 11 K. ThFe2Al10 is a weakly temperature-dependent Pauli-paramagnet. However, at lower temperatures the ferromagnetic correlations are observed, which signals that the system drives to quantum criticality. The distinct minimum in electrical resistivity observed at about 20 K suggests a realization of a nonmagnetic two-channel Kondo-effect in ThFe2Al10, as discussed for ThAsSe [Phys. Rev. Lett. 94, 236603 (2005)], for example. The [rho(T) - rho min] versus T curves of ThFe2Al10, determined along the a-and c-axes, were used to subtract the phonon contributions from the corresponding rho(T)a,c of UFe2Al10. The resulting magnetic part of the average rm(T) dv curve was then analysed in terms of the influence of the crystal field effect on the transport properties. However, to obtain agreement with the experiment, we had to take into account another effect, namely the Kondo-like one. This kind of probe has been applied for the first time in the case of uranium compounds. Based on the magnetoresistivity, we have revealed the anisotropic low-frequency vibrations of the Th atom (located in its [Al16Fe4] cage) interacting with the conduction band, the phenomenon revealed previously in the metallic UB12 [Phil. Mag. B 95, 2343 (2015)]. Furthermore, fully relativistic band structure calculations performed for ThFe2Al10 revealed its metallic-like character with a similarly large contribution of the Fe 3d electrons at the Fermi level as predicted previously for its 5felectron analogue UFe2Al10. In addition, there are substantial differences between their Fermi surfaces. (C) 2017 Elsevier B.V. All rights reserved.
更多
查看译文
关键词
Actinide alloys and compounds,Heat capacity,Magnetoresistance,Electron-phonon interactions,Kondo effect,Electronic band structure
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要