Femtosecond X-ray Fourier holography imaging of free-flying nanoparticles

NATURE PHOTONICS(2018)

引用 71|浏览272
暂无评分
摘要
Ultrafast X-ray imaging on individual fragile specimens such as aerosols 1 , metastable particles 2 , superfluid quantum systems 3 and live biospecimens 4 provides high-resolution information that is inaccessible with conventional imaging techniques. Coherent X-ray diffractive imaging, however, suffers from intrinsic loss of phase, and therefore structure recovery is often complicated and not always uniquely defined 4 , 5 . Here, we introduce the method of in-flight holography, where we use nanoclusters as reference X-ray scatterers to encode relative phase information into diffraction patterns of a virus. The resulting hologram contains an unambiguous three-dimensional map of a virus and two nanoclusters with the highest lateral resolution so far achieved via single shot X-ray holography. Our approach unlocks the benefits of holography for ultrafast X-ray imaging of nanoscale, non-periodic systems and paves the way to direct observation of complex electron dynamics down to the attosecond timescale.
更多
查看译文
关键词
Femtosecond,Holography,Laser,Ultrashort pulse,Fourier transform,Superfluidity,Metastability,Nanoparticle,Optics,Materials science
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要