Measuring water surface topography using laser scanning

Flow Measurement and Instrumentation(2017)

引用 16|浏览7
暂无评分
摘要
Measuring the topography of water surfaces with conventional measurement methods is, particularly in the case of turbulent flow with strong vertical and longitudinal dynamics, a very demanding and challenging task. Channel confluences are important elements in river engineering, as they appear in natural and regulated river channels, torrents, as well as in numerous hydraulic structures. At confluences, especially in the case of incoming supercritical flow, turbulent three-dimensional flows occur, and a time-varying structure of waters surface. Laser scanning enables data capture with high spatial and temporal resolution, and this method is widely used nowadays. This article discusses laser scanning as a measurement method for acquiring the agitated shape of a water surface. The application of a commercial two-dimensional LIDAR device for free-water-surface acquisition is presented for two cases. In the first case the measurements were performed in a glass tank where it was possible to determine the precise reference water level. In the second case we used LIDAR with turbulent aerated flow for fluctuating free-water surface measurement. Measurements were taken in the model of supercritical confluence, where the development of standing waves leads to the phenomenon of self-aerated flow. The measurements presented in the paper were conducted for a selected discharge rates and the Froude numbers of the main and side flow channels. Measurement results are shown as surface profiles at several selected locations of confluence. This measurement method has proven to be very promising.
更多
查看译文
关键词
Laser scanning,Non-intrusive measurement method,Turbulent flow,Aerated flow,Water surface topography
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要