The non-homologous end joining factor Ku orchestrates replication fork resection and fine-tunes Rad51-mediated fork restart

Nature Communications(2017)

Cited 0|Views6
No score
Abstract
Replication requires Homologous Recombination (HR) to stabilize and restart terminally-arrested forks. HR-mediated fork processing requires single stranded DNA (ssDNA) gaps and not necessarily Double Strand Breaks. We used genetic and molecular assays to investigate fork-resection and restart at dysfunctional, unbroken forks in Schizosaccharomyces pombe . We found that fork-resection is a two-step process coordinated by the non-homologous end joining factor Ku. An initial resection mediated by MRN/Ctp1 removes Ku from terminally-arrested forks, generating ~ 110 bp sized gaps obligatory for subsequent Exo1-mediated long-range resection and replication restart. The lack of Ku results in slower fork restart, excessive resection, and impaired RPA recruitment. We propose that terminally-arrested forks undergo fork reversal, providing a single DNA end for Ku binding which primes RPA-coated ssDNA. We uncover an unprecedented role for Ku in orchestrating resection of unbroken forks and in fine-tuning HR-mediated replication restart.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined