Trace doping of multiple elements enables stable battery cycling of LiCoO2 at 4.6 V

Nature Energy(2019)

Cited 552|Views99
No score
Abstract
LiCoO2 is a dominant cathode material for lithium-ion (Li-ion) batteries due to its high volumetric energy density, which could potentially be further improved by charging to high voltages. However, practical adoption of high-voltage charging is hindered by LiCoO2’s structural instability at the deeply delithiated state and the associated safety concerns. Here, we achieve stable cycling of LiCoO2 at 4.6 V (versus Li/Li+) through trace Ti–Mg–Al co-doping. Using state-of-the-art synchrotron X-ray imaging and spectroscopic techniques, we report the incorporation of Mg and Al into the LiCoO2 lattice, which inhibits the undesired phase transition at voltages above 4.5 V. We also show that, even in trace amounts, Ti segregates significantly at grain boundaries and on the surface, modifying the microstructure of the particles while stabilizing the surface oxygen at high voltages. These dopants contribute through different mechanisms and synergistically promote the cycle stability of LiCoO2 at 4.6 V. LiCoO2 is a widely used cathode material in Li-ion batteries for applications such as portable electronics. Here, the authors report multiple-element doping to enable stable cycling of LiCoO2 at high voltages that are not yet accessible with commercial Li-ion batteries.
More
Translated text
Key words
Electrochemistry,Energy storage,Materials for energy and catalysis,Energy,general,Energy Policy,Economics and Management,Energy Systems,Energy Storage,Renewable and Green Energy
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined