d-HDDR Processing of Nd-Fe-B Based Alloys to Obtain Highly Anisotropic Nanocrystalline Powders

Materials Science Forum(2017)

Cited 0|Views7
No score
Abstract
The HDDR (hydrogenation-disproportionation-desorption-recombination) process is an established powder metallurgy route to obtain Nd–Fe–B nanocrystalline powders for bonded magnets manufacturing. Therefore, both conventional (c-HDDR) and dynamic HDDR (d-HDDR) processes has been investigated to obtain Nd-Fe-B-based powders with different characteristics. Magnetic properties were measured by means of a hysteresisgraph and the powder obtained by d-HDDR showed strong anisotropy, allowing a Br of 1.1 T in the bonded magnet, whereas c-HDDR powder was isotropic with a Br of 0.6 T. Microstructural changes were characterized by X-ray diffraction (DRX) and scanning electron microscopy (SEM). X-ray patters of anisotropic powders made by d-HDDR showed high intensity reflection peaks indexed as (004), (105) and (006) planes in the aligning direction, due the texture inducement in c-axis of the main phase (Nd2Fe14B). However, SEM micrographs of c-HDDR powder showed a more homogeneous microstructure, with grain size of ~300 nm, when compared to d-HDDR powder that ranged from 300 nm to 500 nm. This difference is assumed to be the cause of lower intrinsic coercivity found in the c-HDDR powder.
More
Translated text
Key words
alloys,d-hddr,nd-fe-b
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined