UV-Printable and Flexible Humidity Sensors Based on Conducting/Insulating Semi-Interpenetrated Polymer Networks

MACROMOLECULAR MATERIALS AND ENGINEERING(2017)

引用 18|浏览16
暂无评分
摘要
Humidity sensors are of great interest in many fields because humidity plays a crucial role in several processes. Nevertheless, their application is often limited by the expensive fabrication and the stiffness of the substrates usually employed. In this work, novel UV-curable and flexible humidity sensors based on semi-interpenetrated polymer networks are fabricated. They can be prepared either as self-standing sensors or applied on different bendable substrates. The fabrication consists of a simultaneous UV-curing of an insulating network (acrylic or epoxy) and photopolymerization of conducting polypyrrole (PPy). The detection mechanism involves proton transfer on the PPy chains that can be macroscopically observed by electrical impedance variations. These devices show promising humidity-sensing properties from 20 to 97% of relative humidity with a maximum response of about 180%. The dynamic sensing investigation proves that the recovery process can be tailored playing on the glass transition temperature and wettability of the films. The remarkable sensing capabilities of these sensors make them a valid alternative in many applications where printability and flexibility are required along with simple fabrication method consisting of one-step synthesis.
更多
查看译文
关键词
photopolymerization,polymeric humidity sensors,polypyrrole
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要