ADRC control of a 6-DOF parallel manipulator for telescope secondary mirror

JOURNAL OF INSTRUMENTATION(2017)

引用 16|浏览6
暂无评分
摘要
In view of the special requirements of the secondary mirror control system on large aperture telescopes, an improved 6-DOF parallel manipulator is designed and used to replace the traditional hexapod used in telescope secondary mirror position dynamic compensation. A highly robust active disturbance rejection controller (ADRC) is designed, which consists of a nonlinear tracking differentiator (NTD), an extended state observer (ESO), a nonlinear state error feedback law (NLSEF), and disturbance compensation. The ESO can track the all-order state variables, as well as estimate and compensate for unmodeled dynamics and total external disturbance of the system. The results of simulation indicate that the ADRC can improve tracking precision and control performance when it is compared with the proportion integration differentiation (PID) controller. The test results show that the absolute accuracy of the three dimensional parallel motions is about +/- 4 mu m, and the two dimensional tilts' is about 10 mu rad. The control precision meets the system design for a telescope secondary mirror.
更多
查看译文
关键词
Control systems,Instrument optimisation,Simulation methods and programs
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要