WEAR OF UNICOMPARTMENTAL KNEE REPLACEMENTS: STANDARD AND REVERSED MATERIAL COUPLES

Journal of Bone and Joint Surgery-british Volume(2017)

Cited 23|Views8
No score
Abstract
Unicompartmental knee replacements (unis) offer an early option for the treatment of osteoarthritis. However there is no standard method for measuring the wear of unis in the laboratory. Most knee simulators are designed for TKA, for which there is an ISO standard. This study is about a wear method for unis, applied to a novel unicompartmental knee replacement (design by PSW). It has a metal-backed UHMWPE femoral component to articulate against a monoblock metallic tibial component. The advantage is reduced resection of strong bone from the proximal tibia for more durable fixation. The femoral component resurfaces the distal end of the femur to a flexion arc of only 42°, the area of cartilage loss in early OA (Fig. 1). We compared this novel bearing couple to the same design but with the usual arrangement of femoral metal and tibial plastic. Our hypothesis was that the wear of the reversed materials would be comparable to conventional and within the range of TKR bearings.The test was conducted on a 4-station Instron-Stanmore force-controlled knee simulator. Both specimen groups (n=4 each) were highly crosslinked UHWMPE stabilized with vitamin E. On each of the four stations, one uni system was mounted on the medial side and one on the lateral, as if a standard TKR was being tested. The ISO-14243-1 walking cycle force-control waveforms were applied for 5 million cycles (Mc) at 1Hz, but with the maximum flexion during the swing phase (usually 58°) curtailed to 35° to maintain the contact within the arc of the femoral component. In-vivo this implant would be inlaid into the distal medial femoral condyle and the articulating surface immediately transitions into native cartilage. In our test set-up there was no secondary surface as such. The reduced flexion occurred during the swing phase where compressive load was low and the effect on the wear would be negligible. Wear was measured gravimetrically at many intervals and corrected by the weight gain of extra two active soak controls per group.After 5 Mc, the average rates of gravimetric weight loss from the UHMWPE femoral and tibial bearings were 4.73±0.266 mg/Mc and 3.07±0.388 mg/Mc, respectively (statistically significantly different, p=0.0007) (Fig. 2). No significant difference was found in wear between medial and lateral placement for specimens of the same type, although the medial side generally wore more. Although the plastic femorals of the reverse design wore more than the plastic tibials, the wear was still low at u003c5 mg/Mc. The range for typical TKRs using ultra-high molecular weight polyethylene, tested under the same conditions in our laboratory has been 2.85–24.1 mg/Mc.In summary, we adapted the ISO standard TKA wear test for the evaluation of unis, and in this case, a uni with reversed materials. Based on the wear results, this type of ‘early intervention’ design could therefore be a viable option, offering simplicity with less modular parts as well as load sharing with the native articular cartilage.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined