Laser-synthesized Y2O3:Eu3+ nanophosphors and their stabilization in water suspensions

Optical Materials(2017)

Cited 18|Views9
No score
Abstract
Europium doped yttrium oxide nanophosphors (Y2O3 doped with 5% Eu3+), which consists of spherical single-phase monoclinic particles with an average size of 17 nm, was prepared by laser synthesis. While the monoclinic material has a low efficiency of only 19% of a μm-sized commercial Y2O3:Eu product, the cubic phase after calcination at 900 °C achieves 68% despite the remaining hydroxo-groups at the surface and still small crystallite size (56 nm). An ethanolammonium salt of citric acid (Dolapix CE64) was used as a dispersant in water suspension. To estimate the stability of the dispersed phase, the electrokinetic potential and agglomerate sizes were measured as a function of pH. With this dispersant, a 30 wt% nanopowder water suspension, showing a Newtonian viscosity of about 6 mPa × s, was obtained. Maximum content of the nanopowder of about 60 wt% can be accomplished in the slurry, still fluid enough to be used to cast a highly uniform and dense ceramic green body to sinter nanostructured Y2O3:Eu3+ phosphors ceramics.
More
Translated text
Key words
Phosphor,Yttrium oxide,Nanoparticles,Laser synthesis,Suspension,Dispersant,Viscosity
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined