Enhanced gas sensing properties of chemiresistors based on ZnO nanorods electrodecorated with Au and Pd nanoparticles

MRS ADVANCES(2017)

Cited 1|Views16
No score
Abstract
Colloidal Au and Pd nanoparticles (NPs) were directly electrochemically synthesized, by sacrificial anode electrolysis (SAE), on hydrothermal ZnO nanostructures, previously desiccated; further, the functionalized ZnO nanostructures were subjected to thermal annealing at 550°C to obtain stable ZnO nanorods (NRs), superficially decorated by naked metal NPs. The both pristine and metal functionalized ZnO NRs were proposed as active layer in chemiresistive sensors for environmental monitoring to detect pollutant gases (e.g. NO 2 , C 4 H 10 ). The effect of the presence and of the chemical nature of the deposited metal NPs on the performance of ZnO NRs-based gas sensor (e.g. sensitivity, selectivity and recovery) was evaluated, comparing the sensing results with those of pristine ZnO NRs. In particular, the gas sensing properties of pristine and metal-functionalized ZnO NRs were studied at an operating temperature of 300°C towards a various range of concentration of different gaseous pollutants.
More
Translated text
Key words
zno nanorods,chemiresistors,nanoparticles
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined