In Situ Characterisation of Austenite/Ferrite Transformation Kinetics and Modelling of Interphase Precipitation Inter-Sheet Spacing in V Microalloyed HSLA Steels

Materials Science Forum(2016)

引用 1|浏览4
暂无评分
摘要
A new generation of low-carbon microalloyed High Strength Low Alloy (HSLA) steels has been developed to utilize a combination of single-phase ferritic microstructures and optimized interphase precipitation to provide high level strength and exceptional formability. The interphase precipitation reaction is a transient process lending itself strongly to take advantage of in-situ characterization techniques. The austenite/ferrite interface kinetics during isothermal transformation at 1003 K is measured using HT-CSLM, the pre-exponential effective mobility constant was found to be mobility 0.822 (m J)/(mole s). The V interphase precipitation is characterised using TEM at isothermal transformation temperatures of 923 and 973 K as having inter-sheet spacing of 22±7 and 32±9 nm respectively. Interphase precipitation inter-sheet-spacing is simulated using a revised Quasi-Ledge model and qualitatively predicts the observed trends observed for inter-sheet spacing. The results of in-situ characterisation and modelling suggest that it is possible to optimize the strengthening potential of the precipitation processes by controlling the thermal processing of microalloyed HSLA.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要