Polymer Thin Films with Tunable Acetylcholine-like Functionality Enable Long-Term Culture of Primary Hippocampal Neurons

ACS Nano(2016)

引用 14|浏览18
暂无评分
摘要
In vitro culture systems for primary neurons have served as useful tools for neuroscience research. However, conventional in vitro culture methods are still plagued by challenging problems with respect to applications to neurodegenerative disease models or neuron-based biosensors and neural chips, which commonly require long-term culture of neural cells. These impediments highlight the necessity of developing a platform capable of sustaining neural activity over months. Here, we designed a series of polymeric bilayers composed of poly(glycidyl methacrylate) (pGMA) and poly(2-(dimethylamino)ethyl methacrylate) (pDMAEMA), designated pGMA:pDMAEMA, using initiated chemical vapor deposition (iCVD). Harnessing the surface-growing characteristics of iCVD polymer films, we were able to precisely engraft acetylcholine-like functionalities (tertiary amine and quaternary ammonium) onto cell culture plates. Notably, pGD3, a pGMA:pDMAEMA preparation with the highest surface composition of quaternary ammonium, fostered...
更多
查看译文
关键词
neuron culture,polymer thin films,initiated chemical vapor deposition,iCVD,acetylcholine,brain-derived neurotrophic factor,BDNF
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要