Theoretical Investigation of the Structural, Elastic, and Thermodynamic Properties of MgAl2O4 Spinel under High Pressure

JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN(2016)

引用 35|浏览6
暂无评分
摘要
structural and elastic properties of MgAl2O4 spinel under high pressure are investigated through the firstprinciples calculations. The lattice parameters and elastic constants are in good agreement with the available experimental and theoretical results. The polycrystalline elastic moduli of MgAl2O4 spinel are calculated using the Voigt-Reuss-Hill approximation. By the elastic stability criteria, the MgAl2O4 spinel is mechanically stable within 80 GPa. MgAl2O4 possesses ductile nature, and the ductility is enhanced with the increase of pressure. The sound velocities over a wide range of pressures are also obtained. Furthermore, the elastic anisotropies of MgAl2O4 are investigated via the various anisotropic indexes and the 3D surface constructions. It is found that MgAl2O4 is isotropic for bulk modulus, while is anisotropic for shear modulus and Young's modulus, and the elastic anisotropy of MgAl2O4 increases due to the applying pressure. Besides, the directions with smaller values of shear modulus for MgAl2O4 will deform preferentially under high hydrostatic pressure. Through the quasi- harmonic Debye model, we also investigated the thermodynamic properties of MgAl2O4 spinel.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要