Modified inverse micelle synthesis for mesoporous alumina with a high D4 siloxane adsorption capacity

Microporous and Mesoporous Materials(2017)

引用 17|浏览14
暂无评分
摘要
In this work, mesoporous aluminas (MAs) with uniform and monomodal pores were fabricated via a modified inverse micelle synthesis method, using a non-polar solvent (to minimize the effect of water content) and short reaction time (for a fast evaporation process). The effects of reaction times (4–8 h), surfactant chain lengths (non-ionic surfactants), and calcination temperatures and hold times (450–600 °C; 1–4 h) on the textural properties of MA were studied. The targeted pore sizes of MA were obtained in the range of 3.1–5.4 nm by adjusting the surfactant and reaction time. The surface area and pore volume were controlled by the calcination temperature and hold time while maintaining the thermal stability of the materials. The tuned MA of the large mesopore volume achieved 168 mg/g octamethylcyclotetrasiloxane (D4 siloxane) adsorption capacity, a 32% improvement compared to commercially activated alumina. After three adsorption recycles, the synthesized MA still maintained approximate 85% of its original adsorption capacity, demonstrating a sustainable adsorption performance and high potential for related industrial applications.
更多
查看译文
关键词
Mesoporous alumina (MA),Reaction times,Surfactant chain lengths,Calcination temperatures and hold times,Textural properties,D4 siloxane,Adsorption
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要