Synthesis and characterization of Mo-doped LiNi0.5Co0.2Mn0.3O2 cathode materials prepared by a hydrothermal process

Ceramics International(2017)

引用 51|浏览9
暂无评分
摘要
The lithiated metal oxide precursor with α-NaFeO2 structure and low crystallinity prepared by a hydrothermal process is verified to be Li-Ni-Co-Mn-Mo composite oxide. The layered Li(Ni0.5Co0.2Mn0.3)1-xMoxO2 (x=0, 0.005, 0.01 and 0.02) cathode material with high crystallinity for lithium ion batteries (LIBs) is obtained from the lithiated metal oxide precursor by heat treatment. The results of SEM and EDS mapping characterization indicate that the molybdenum is distributed in the materials homogeneously. The effects of molybdenum on the structure, morphology and electrochemical performances of the LiNi0.5Co0.2Mn0.3O2 are extensively studied. According to the results of electrochemical characterizations, the Li(Ni0.5Co0.2Mn0.3)0.99Mo0.01O2 sample exhibits the best discharge cycling performance with capacity retention of 97.0% after 50 cycles, and an excellent rate performance of 125.5 mAh·g−1 at 8C rate. The Li(Ni0.5Co0.2Mn0.3)0.99Mo0.01O2 sample also shows a lower potential polarization, smaller impedance parameters and a larger Li+ diffusion by CV and EIS analyses.
更多
查看译文
关键词
Hydrothermal process,Doping,LiNi0.5Co0.2Mn0.3O2,Cathode material,Lithium-ion battery
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要