A New Method of Driving Wire Dipole Antennas to Multiband Operation via Non-Uniform EBG Lattices for Employment to Wireless Communication Applications

Progress in Electromagnetics Research C(2016)

引用 3|浏览4
暂无评分
摘要
In this paper, a novel approach is attained to the design of low profile antenna structures with wire dipoles and multiband operation. The aim is achieved by utilization of non-uniform Electromagnetic Band Gap (EBG) lattices as reflectors, and this potential comes to be added to the total of special capabilities of this type of Artificial Magnetic Conductors (AMC). It is proved that a properly designed EBG of this type can resonate at more than one frequency and is capable to drive, inside these bands, the dipole to higher order modes of operation besides its basic one. The resulting hybrid radiator apart from its multiband operation exhibits high gain that reaches the value of 9.6 dB, satisfactory Mean Effective Gain (MEG) and very low correlation coefficients, much less than 0.1, between the signals at the input of the dipoles in the case that the radiator is configured as an antenna array. The study of these quantities was performed using the signal characteristics of a real mobile communication environment along with the hybrid antenna properties of operation. The presented analytical results show that the designed radiators are competitive to the classical microstrip ones and can be effectively used in modern wireless communication networks, incorporated either into stationary or into mobile units.
更多
查看译文
关键词
driving wire dipole antennas,non-uniform
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要