H-mode plasmas at very low aspect ratio on the Pegasus Toroidal Experiment

NUCLEAR FUSION(2017)

引用 17|浏览27
暂无评分
摘要
H-mode is obtained at A similar to 1.2 in the Pegasus Toroidal Experiment via Ohmic heating, highfield- side fueling, and low edge recycling in both limited and diverted magnetic topologies. These H-mode plasmas show the formation of edge current and pressure pedestals and a doubling of the energy confinement time to H-98y,H-2 similar to 1. The L-H power threshold P-LH increases with density, and there is no P-LH minimum observed in the attainable density space. The power threshold is equivalent in limited and diverted plasmas, consistent with the FM3 model. However, the measured PLH is similar to 15x higher than that predicted by conventional International Tokamak Physics Activity (ITPA) scalings, and P-LH/P-ITPA08 increases as A -> 1. Small ELMs are present at low input power P-IN similar to P-LH, with toroidal mode number n <= 4. At P-IN >> P-LH, they transition to large ELMs with intermediate 5< n< 15. The dominant-n component of a large ELM grows exponentially, while other components evolve nonlinearly and can damp prior to the crash. Direct measurements of the current profile in the pedestal region show that both ELM types exhibit a generation of a current-hole, followed by a pedestal recovery. Large ELMs are shown to further expel a current-carrying filament. Small ELM suppression via injection of low levels of helical current into the edge plasma region is also indicated.
更多
查看译文
关键词
H-mode,spherical tokamaks,equilibrium reconstructions,energy confinement,ELM,ELM dynamics
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要