Development of a Size Effect Law for RC Structures

Key Engineering Materials(2016)

引用 0|浏览2
暂无评分
摘要
The work presented is a part of the french ANR (Agence Nationale pour la Recherche) project MACENA (Maitrise du Confinement en Accident), its main objective is to better present the role of concrete heterogeneities in RC structures in the cracking process. This paper aims to develop and use the size effect method (WL2) applicable to RC structures proposed by Sellier and Millard 2014 [1]. The originality of the method lies on introducing a weighting function defined in the direction of the maximum principal stress using a scale length. In this work, an inverse analysis of the method allows to identify this scale length using experimental test series of concrete specimens under tensile load and 3 point bending beams. The approach is then applied to predict the sensitivity of the mechanical behavior of a reinforced concrete tie under tensile load. The method is applied in the elastic phase and allows providing the structural tensile strength corresponding to the first crack which is affected by size effect and plays a key role because cracked and uncracked structures behave in severe environment in a very different way. In FE model, correlated random fields on the tensile strength of the concrete can be generated using the identified scale length to characterize the autocorrelation length.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要