Evaluating fabrication feasibility and biomedical application potential of in situ 3D printing technology

RAPID PROTOTYPING JOURNAL(2016)

引用 18|浏览4
暂无评分
摘要
Purpose - This paper aims to present a solid freeform fabrication-based in situ three-dimensional (3D) printing method. This method enables simultaneous cross-linking alginate at ambient environmental conditions (temperature and pressure) for 3D-laden construct fabrication. The fabrication feasibility and potentials in biomedical applications were evaluated. Design/methodology/approach - Fabrication feasibility was evaluated as the investigation of fabrication parameters on strut formability (the capability to fabricate a cylindrical strut in the same diameter as dispensing tip) and structural stability (the capability to hold the fabricated 3D-laden construct against mechanical disturbance). Potentials in biomedical application was evaluated as the investigation on structural integrity (the capability to preserve the fabricated 3D-laden construct in cell culture condition). Findings - Strut formability can be achieved when the flow rate of alginate suspension and nozzle travel speed are set according to the dispensing tip size, and extruded alginate was cross-linked sufficiently. A range of cross-linking-related fabrication parameters was determined for sufficient cross-link. The structural stability and structural integrity were found to be controlled by alginate composition. An optimized setting of the alginate composition and the fabrication parameters was determined for the fabrication of a desired stable scaffold with structural integrity for 14 days. Originality/value - This paper reports that in situ 3D printing is an efficient method for 3D-laden construct fabrication and its potentials in biomedical application.
更多
查看译文
关键词
Printing,Biotechnology,Fabrication,Polymers,3D
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要