Consequences assessment of explosions in pipes using coupled FEM-SPH method

Journal of Loss Prevention in the Process Industries(2016)

引用 22|浏览1
暂无评分
摘要
Explosions often lead to destruction of equipment, which is a difficult problem including complicated fluid-solid interactions. Most traditional CFD methods cannot synchronously solve the movements of fluids and large deformation and fracture of solids because such problem is usually accompanied with constantly moving-and-changing boundary conditions. In this paper, a coupled Finite Element Method-Smoothed Particle Hydrodynamics (FEM-SPH) method was proposed to simulate the dynamic processes of explosions in pipes. The propagation of blast wave and the fracture of pipe were captured in every timestep, where the energy dissipation caused by plastic deformation and crack propagation were fully considered. A rate-dependent failure criterion for high-strain-rate load conditions was employed in the numerical simulation, which was presented in our previous work and has been verified in the dynamic fracture behavior of steels for pressure vessels and pipes. In addition, a simpler formula was proposed to describe the attenuation of blast wave outside the pipe and the consequences caused by the explosions were assessed. Results revealed the interaction between blast wave and pipe, the leakage of detonation products, the attenuations of peak overpressures outside the pipe and the corresponding consequences at different distances. It is found that when considering the energy consumption during plastic deformation and crack propagation in coupled FEM-SPH method, the assessment results are more rational than that without considering such energy consumption.
更多
查看译文
关键词
Pipe explosion,Consequences assessment,Blast wave,Dynamic fracture,Smoothed particle hydrodynamics
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要