N-phenylindole-diketopyrrolopyrrole-containing narrow band-gap materials for dopant-free hole transporting layer of perovskite solar cell

Organic Electronics(2016)

引用 37|浏览3
暂无评分
摘要
Novel conjugated materials, DPIO and DPIE, having same molecular configuration of both an electron donating N-phenylindole and an electron accepting diketopyrrolopyrrole derivative, exhibited different aggregation behavior because of the applied side chains. When DPIO and DPIE were applied to as hole transporting materials in perovskite solar cell, DPIO showed better device performance than ones with DPIE, mostly due to the aggregation-assisted enhanced electrical property. DPIO effectively extracted hole from the perovskite layer, providing over 10% PCE of cell efficiency without any chemical doping. Incident-photon-to-electron conversion efficiency (IPCE) measurement confirmed that DPIO’s strong absorption in the longer wavelength region partly contributed to the light harvesting of the solar cell device. In addition, time-resolved photoluminescence (TRPL) and transient photovoltage (TPV) studies proved that the DPIO-based device, compared to the conventional Spiro-MeOTAD-based device, has better charge extraction ability and reduced charge recombination.
更多
查看译文
关键词
Perovskite solar cell,Dopant-free hole transporting material,Dipolar material,Synthesis,Recombination
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要