Defect-mediated spontaneous emission enhancement of plasmon-coupled CuInS 2 and CuInS 2 /ZnS

OPTICAL MATERIALS EXPRESS(2016)

引用 3|浏览12
暂无评分
摘要
The studies of plasmon-coupled excitons at the surface/interface-, shallow-, and deep-trapped states of copper-indium-disulfide (CIS) with/without zinc-sulfide (ZnS) shell revealed the defect-mediated spontaneous emission enhancement. The PL enhancement with spectral blue-shift of plasmon-coupled excitons in CIS quantum dots (QDs) indicates the large reduction of nonradiative decay at the surface-and shallow-trapped states with strong spectral overlapping. The PL enhancement with spectral red-shift of plasmon-coupled excitons in CIS/ZnS QDs is accredited to the defect-mediated PL enhancement by the higher fractional amplitude at the interface-trapped state around the longer spectral region. The spontaneous emission enhancement of plasmon-coupled CIS QDs were similar to 2.1, similar to 2.2, and similar to 2.8-folds compared to the decay rates of CIS, and those of plasmon-coupled CIS/ZnS QDs were similar to 24.1, similar to 32.8, and similar to 24.9-folds compared to the decay rates of CIS/ZnS at shorter, intermediate, and longer spectral regions due to relatively stable charge carriers and close to the surface plasmon resonance. The PL enhancements of plasmon-coupled CIS at room temperature and 6 K were two-fold and three-fold compared to the integrated CIS PLs, and the PL enhancements of plasmon-coupled CIS/ZnS at room temperature and 6 K were five-fold and eight-fold compared to the integrated CIS/ZnS PLs. The large PL enhancement is attributable to the plasmon-exciton coupling through Coulomb interaction and the local field enhancement. The larger PL enhancement of plasmon-coupled CIS/ZnS compared to that of plasmon-coupled CIS is accredited to the larger spontaneous emission enhancement. (C) 2016 Optical Society of America
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要