谷歌浏览器插件
订阅小程序
在清言上使用

Exploring the Limiting Open‐Circuit Voltage and the Voltage Loss Mechanism in Planar CH3NH3PbBr3 Perovskite Solar Cells

Advanced energy materials(2016)

引用 79|浏览49
暂无评分
摘要
Perovskite solar cells based on CH3NH3PbBr3 with a band gap of 2.3 eV are attracting intense research interests due to their high open‐circuit voltage (Voc) potential, which is specifically relevant for the use in tandem configuration or spectral splitting. Many efforts have been performed to optimize the Voc of CH3NH3PbBr3 solar cells; however, the limiting Voc (namely, radiative Voc:Voc,rad) and the corresponding ΔVoc (the difference between Voc,rad and Voc) mechanism are still unknown. Here, the average Voc of 1.50 V with the maximum value of 1.53 V at room temperature is achieved for a CH3NH3PbBr3 solar cell. External quantum efficiency measurements with electroluminescence spectroscopy determine the Voc,rad of CH3NH3PbBr3 cells with 1.95 V and a ΔVoc of 0.45 V at 295 K. When the temperature declines from 295 to 200 K, the obtained Voc remains comparably stable in the vicinity of 1.5 V while the corresponding ΔVoc values show a more significant increase. Our findings suggest that the Voc of CH3NH3PbBr3 cells is primarily limited by the interface losses induced by the charge extraction layer rather than by bulk dominated recombination losses. These findings are important for developing strategies how to further enhance the Voc of CH3NH3PbBr3‐based solar cells.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要