Studies on the Inhibitory Mechanisms of Baicalein in B16F10 Melanoma Cell Proliferation

JOURNAL OF FOOD AND DRUG ANALYSIS(2020)

引用 1|浏览6
暂无评分
摘要
Baicalein induces the formation of superoxide and hydroxyl radicals via 12-lipoxygenase (12-LOX) in the B16F10 mouse melanoma cell line; baicalein also causes a reduction in cellular viability and induces cell apoptosis. In this study, we utilized ROS scavengers to evaluate the role of ROS in baicalein-induced cell death and used the 12-LOX downstream product, 12-hydroxyeicosatetraenoic acid (12-HETE), to counterbalance the 12-LOX-inhibitory action of baicalein. ROS scavengers had no effect on cell differentiation, but in the cellular viability (MTT) assay, ROS scavengers effectively reversed cell viability reduction induced by baicalein. A Western blot analysis revealed that the ROS scavengers had no effect on the cell apoptosis protein, active caspase-3. From the aspect of 12-LOX, 12-HETE had no effect on cell differentiation, but it effectively reversed the reduction in cellular viability caused by baicalein in B16F10 cells. 12-HETE also possessed an inhibitory effect on the increase in expression of active caspase-3 caused by baicalein. Combined pretreatment with ROS scavengers and 12-HETE minimized the damage caused by baicalein. The majority of cell death occurring in response to baicalein-induced ROS formation in B16F10 mouse melanoma was due to cell necrosis. Cell apoptosis due to 12-LOX suppression by baicalein only accounted for a small portion.
更多
查看译文
关键词
baicalein,12-lipoxygenase,reactive oxygen species,B16F10 cells,apoptosis,necrosis
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要