Training and Pruning System Effects on Vegetative Growth Potential, Light Interception, and Cropping Efficiency in Peach Trees

JOURNAL OF THE AMERICAN SOCIETY FOR HORTICULTURAL SCIENCE(1998)

引用 75|浏览4
暂无评分
摘要
Plant dry matter production is proportional to light interception, but fruit production does not always increase with increased light interception. Vegetative growth potential, the effect of cropping on vegetative growth, light interception and cropping efficiency of a clingstone peach [Prunus persica (L.) Batsch 'Ross' on 'Nemaguard' rootstock] were assessed in four production systems differing in tree density and training system. The four systems were a perpendicular V (KAC-V) system, a high-density perpendicular V (HiD KAC-V) system, a cordon system, and an open vase system. Vegetative growth potential, assessed on defruited trees, was higher in the cordon system and lower in the open vase system compared to the V systems. Cropping reduced leaf growth on the V and cordon systems and stem growth on the KAC-V and cordon systems. On a ground area basis, the HiD KAC-V system had the highest crop yields and the open vase system had the lowest. The cordon and HiD KAC-V systems intercepted more light and produced more fruit, stem, and leaf biomass than the open vase system. However, the modified harvest increment, the ratio of fruit dry mass to the sum of fruit, leaf, and stem dry mass, was lower in the cordon system than in the other systems. Thus, on this basis, the cordon system was the least efficient. On a trunk cross-sectional area basis, there were no significant differences in fruit production among any of the four training systems. For current year production, crop production per unit ground area is the best measure of economic efficiency. However, when planning the spacing, training and pruning of orchard trees, the most appropriate goal seems to be a system that increases light interception without increasing vegetative growth potential, such as the HiD KAC-V system.
更多
查看译文
关键词
Prunus persica,dry matter partitioning,harvest increment,crop yield,stem and leaf growth
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要