Characterization of In Vivo Metabolites of a Potential Anti-obesity Compound, the 3-Methyl-1 H -Purine-2,6-Dione Derivative C-11, Employing Ultra-High Performance Liquid Chromatography Coupled with Quadrupole Time-of-Flight Mass Spectrometry

Chromatographia(2016)

引用 1|浏览8
暂无评分
摘要
C-11 (2-((7-Ethyl-3-methyl-8-(4-(2-(methyl(pyridin-2-yl)-amino)-ethoxy)phenyl)-2,6-dioxo-2,3,6,7-tetrahydro-1 H -purin-1-yl)methyl)benzonitrile-one hydrochloride), which is based on the structure of rosiglitazone, was first synthesized in our laboratory and shown to be a promising anti-obesity drug candidate in our previous pharmacological study. Considering the importance of metabolic fate in vivo in the further development of drug candidates during early drug discovery, it is essential to characterize the metabolism of C-11 in vivo. In this work, a method based on ultra-high performance liquid chromatography combined with quadrupole time-of-flight mass spectrometry (UPLC/Q-TOF-MS) was successfully developed to investigate the in vivo metabolic profile of C-11 in rats. Rat urine, feces, and plasma samples were collected from male Sprague–Dawley rats after intravenous administration of C-11 in a single dose of 30 mg kg −1 body weight. Besides the parent drug, a total of 25 metabolites (including 18 phase I and 7 phase II metabolites) were detected and tentatively identified by comparing their mass spectrometry profiles with those of C-11. This enabled the metabolic pathways of C-11 to be proposed for the first time. Our results revealed that N -depyridinylation, N -demethylation, hydroxylation, glucuronidation, and sulfate conjugation are the predominant metabolic pathways of C-11 in rats. The present study provides systematic information on the metabolism of C-11 in vivo, which should lead to a better understanding of its safety and mechanism of action.
更多
查看译文
关键词
C-11, UPLC/Q-TOF-MS, Metabolites in vivo, Metabolic pathways
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要