Corticospinal Excitability Is Associated With Hypocapnia But Not Changes In Cerebral Blood Flow

JOURNAL OF PHYSIOLOGY-LONDON(2016)

Cited 15|Views18
No score
Abstract
Although reductions in cerebral blood flow (CBF) may be involved in central fatigue, the contribution from hypocapnia-induced reductions in CBF versus reductions in CBF per se has not been isolated. This study examined whether reduced arterial PCO2 (P aC O2), independent of concomitant reductions in CBF, impairs neuromuscular function. Neuromuscular function, as indicated by motor-evoked potentials (MEPs), maximal M-wave (M-max) and cortical voluntary activation (cVA) of the flexor carpi radialis muscle during isometric wrist flexion, was assessed in ten males (2910years) during three separate conditions: (1) cyclooxygenase inhibition using indomethacin (Indomethacin, 1.2mgkg(-1)) to selectively reduce CBF by 28.810.3% (estimated using transcranial Doppler ultrasound) without changes in end-tidal PCO2 (P ETC O2); (2) controlled iso-oxic hyperventilation-induced reductions in P aC O2 (Hypocapnia), P ETC O2=30.14.5mmHg with related reductions in CBF (21.76.3%); and (3) isocapnic hyperventilation (Isocapnia) to examine the potential direct influence of hyperventilation-mediated activation of respiratory control centres on CBF and changes in neuromuscular function. Change in MEP amplitude (%M-max) from baseline was greater in Hypocapnia tha in Isocapnia (11.79.8%, 95% confidence interval (CI) [2.6, 20.7], P=0.01) and Indomethacin (13.3 +/- 11.3%, 95% CI [2.8, 23.7], P=0.01) with a large Cohen's effect size (d 1.17). Although not statistically significant, cVA was reduced with a moderate effect size in Indomethacin (d=0.7) and Hypocapnia (d=0.9) compared to Isocapnia. In summary, increased corticospinal excitability - as reflected by larger MEP amplitude - appears to be exclusive to reduced P aC O2, but not reductions in CBF per se. Sub-optimal voluntary output from the motor cortex is moderately associated with decreased CBF, independent of reduced PaCO2.
More
Translated text
Key words
corticospinal excitability,cerebral blood flow,hypocapnia
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined