Nanoscale relationships between uranium and carbonaceous material in alteration halos around unconformity-related uranium deposits of the Kiggavik camp, Paleoproterozoic Thelon Basin, Nunavut, Canada

Ore Geology Reviews(2016)

Cited 13|Views3
No score
Abstract
Concentrations of 7% U and 1% Cu were identified in massive, brecciated, and amorphous carbonaceous materials (CM) characterized by strongly negative values of carbon stable isotopes (δ13C=−39.1‰ relative to PDB). The anomalies are restricted to clay alteration halos developed in Neoarchean Woodburn Lake group metagreywacke that is the predominant host of unconformity-related uranium (U) deposits in the Kiggavik exploration camp. Petrographic and microstructural analyses by SEM, X-ray Diffraction, HRTEM and RAMAN spectroscopy identified carbon veils, best described as graphene-like carbon, upon which nano-scale uraninite crystals are distributed. CMs are common in U systems such as the classic Cretaceous roll-front deposits and the world-class Paleoproterozoic unconformity-related deposits. However, the unusual spatial and textural association of U minerals and CM described herein raises questions on mechanisms that may have been responsible for the precipitation of the CM followed by crystallization of U oxides on its surfaces. Based on the characteristics presented herein, the CMs at Kiggavik are interpreted as hydrothermal in origin. Furthermore, the nanoscale organization and properties of these graphene-like layers that host U oxide crystallites clearly localized U oxide nucleation and growth.
More
Translated text
Key words
Carbonaceous material (CM),Unconformity uranium (U) deposits,Hydrothermal,Proterozoic
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined