Quantification of Organic Porosity and Water Accessibility in Marcellus Shale Using Neutron Scattering

ENERGY & FUELS(2016)

引用 96|浏览8
暂无评分
摘要
Pores within organic matter (OM) are a significant contributor to the total pore system in gas shales. These pores contribute most of the storage capacity in gas shales. Here we present a novel approach to characterize the OM pore structure (including the porosity, specific surface area, pore size distribution, and water accessibility) in Marcellus shale. By using ultrasmall and small-angle neutron scattering, and by exploiting the contrast matching of the shale matrix with suitable mixtures of deuterated and protonated water, both total and water-accessible porosity were measured on centimeter-sized samples from two boreholes from the nanometer to micrometer scale with good statistical coverage. Samples were also measured after combustion at 450 degrees C. Analysis of scattering data from these procedures allowed quantification of OM porosity and water accessibility. OM hosts 24-47% of the total porosity for both organic-rich and-poor samples. This porosity occupies as much as 29% of the OM volume. In contrast to the current paradigm in the literature that OM porosity is organophilic and therefore not likely to contain water, our results demonstrate that OM pores with widths >20 nm exhibit the characteristics of water accessibility. Our approach reveals the complex structure and wetting behavior of the OM porosity at scales that are hard to interrogate using other techniques.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要