Morse Potential-Based Model For Contacting Composite Rough Surfaces: Application To Self-Assembled Monolayer Junctions

JOURNAL OF APPLIED PHYSICS(2016)

引用 9|浏览5
暂无评分
摘要
This work formulates a rough surface contact model that accounts for adhesion through a Morse potential and plasticity through the Kogut-Etsion finite element-based approximation. Compared to the commonly used Lennard-Jones (LJ) potential, the Morse potential provides a more accurate and generalized description for modeling covalent materials and surface interactions. An extension of this contact model to describe composite layered surfaces is presented and implemented to study a self-assembled monolayer (SAM) grown on a gold substrate placed in contact with a second gold substrate. Based on a comparison with prior experimental measurements of the thermal conductance of this SAM junction [Majumdar et al., Nano Lett. 15, 2985-2991 (2015)], the more general Morse potential-based contact model provides a better prediction of the percentage contact area than an equivalent LJ potential-based model. (C) 2016 AIP Publishing LLC.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要