谷歌浏览器插件
订阅小程序
在清言上使用

Decellularized human cardiac extracellular matrix as a natural scaffold for stem cell-based cardiac engineering

Frontiers in Bioengineering and Biotechnology(2016)

引用 0|浏览12
暂无评分
摘要
Event Abstract Back to Event Decellularized human cardiac extracellular matrix as a natural scaffold for stem cell-based cardiac engineering Clotilde Castaldo1, Franca Di Meglio1, Daria Nurzynska1, Valeria Barbato1, Immacolata Belviso1, Mariagrazia Di Gennaro1, Veronica Romano1, Rita Miraglia1, Anna M. Sacco1, Giuseppina Granato1 and Stefania Montagnani1 1 University of Naples Federico II, Public Health, Italy Among biomaterials tested so far in cardiac tissue engineering, the decellularized native ECM (d-ECM) appears by far the most promising and appealing[1]. In order to obtain intact scaffold of d-ECM while preserving its composition, we compared the human cardiac d-ECM produced through four different protocols (named Pr1, Pr2, Pr3 and Pr4) in terms of efficiency of decellularization, composition of scaffolds and their suitability for repopulation with cardiac stem cells to develop myocardial patches. As regards efficiency of decellularization, DNA measurement revealed ineffectiveness of Pr1 and Pr3 in producing thoroughly acellular d-ECM, as they yielded scaffolds containing 46,33+5,3 and 96,7+12,2 ng of DNA/mg of tissue, respectively, while DNA content was as low as 9+2,1 in d-ECMs produced with Pr2, which includes DNase treatment, and 17,33+2.22 in the ones obtained with Pr4. Hematoxylin and Eosin staining confirmed the effectiveness of the decellularization procedure for Pr2 and Pr4, while Masson's staining revealed that Pr4 produced a d-ECM with more preserved architecture. Sirius Red, PAS and Gomori stainings documented the retention of collagen, non-collagenous proteins and elastic fibers in d-ECM from all protocols. Immunodetection of fibronectin, tenascin and laminin confirmed the retention of such ECM proteins in d-ECM, while assay for insoluble collagen and sulphated glycosaminoglycan confirmed the presence of collagen and GAGs in all protocols. Mostly due to ineffective decellularization and, as such, to mild treatment, ECM obtained through Pr3 retained more collagen and GAGs. Nevertheless, collagen content was only 1,5-fold higher than in d-ECM obtained with Pr4, which retained the highest amount of GAGs as well. Notably, GAGs protect growth factors against proteolysis, and protein array to investigate the retention of growth factors by d-ECM proved the highest efficiency of Pr4 in retaining growth factors as HGF, VEGF, TGF and IGF-1 in d-ECM. Finally, to assess suitability of d-ECM scaffolds for cell repopulation, we cultured cardiac stem cells (CSCs) on d-ECM to evaluate their viability and differentiation trend. Among all, Pr2 and Pr4 better supported cellular viability, but Pr4 provided the best environment to promote terminal differentiation towards myocardium, endothelium and smooth muscle cell lineages. Interestingly, we previously reported the inability of human cardiac stem cells to acquire fully differentiated state in vitro[2], but d-ECM supports stem cell terminal differentiation prompting progenitor cells to further proceed in differentiation towards precursor and mature phenotype. In conclusion, the composition and architecture of scaffolds of human cardiac d-ECM depend on decellularization protocol. We report here an adaptation of previously described protocol which yields highly preserved d-ECM, in terms of composition and architectures, that might be successfully be employed in regenerative medicine as biological scaffold. References:[1] Castaldo C, Di Meglio F, Miraglia R, Sacco AM, Romano V, Bancone C, Della Corte A, Montagnani S, Nurzynska D. Cardiac fibroblast-derived extracellular matrix (biomatrix) as a model for the studies of cardiac primitive cell biological properties in normal and pathological adult human heart. Biomed Res Int. 2013;2013:352370[2] Nurzynska D, Di Meglio F, Romano V, Miraglia R, Sacco AM, Latino F, Bancone C, Della Corte A, Maiello C, Amarelli C, Montagnani S, Castaldo C. Cardiac primitive cells become committed to a cardiac fate in adult human heart with chronic ischemic disease but fail to acquire mature phenotype: genetic and phenotypic study. Basic Res Cardiol. 2013; 108(1):320 Keywords: Cell Differentiation, Extracellular Matrix, Tissue Engineering, stem cell Conference: 10th World Biomaterials Congress, Montréal, Canada, 17 May - 22 May, 2016. Presentation Type: Poster Topic: Regenerative medicine: biomaterials for control of tissue induction Citation: Castaldo C, Di Meglio F, Nurzynska D, Barbato V, Belviso I, Di Gennaro M, Romano V, Miraglia R, Sacco AM, Granato G and Montagnani S (2016). Decellularized human cardiac extracellular matrix as a natural scaffold for stem cell-based cardiac engineering. Front. Bioeng. Biotechnol. Conference Abstract: 10th World Biomaterials Congress. doi: 10.3389/conf.FBIOE.2016.01.00619 Copyright: The abstracts in this collection have not been subject to any Frontiers peer review or checks, and are not endorsed by Frontiers. They are made available through the Frontiers publishing platform as a service to conference organizers and presenters. The copyright in the individual abstracts is owned by the author of each abstract or his/her employer unless otherwise stated. Each abstract, as well as the collection of abstracts, are published under a Creative Commons CC-BY 4.0 (attribution) licence (https://creativecommons.org/licenses/by/4.0/) and may thus be reproduced, translated, adapted and be the subject of derivative works provided the authors and Frontiers are attributed. For Frontiers’ terms and conditions please see https://www.frontiersin.org/legal/terms-and-conditions. Received: 27 Mar 2016; Published Online: 30 Mar 2016. Login Required This action requires you to be registered with Frontiers and logged in. To register or login click here. Abstract Info Abstract The Authors in Frontiers Clotilde Castaldo Franca Di Meglio Daria Nurzynska Valeria Barbato Immacolata Belviso Mariagrazia Di Gennaro Veronica Romano Rita Miraglia Anna M Sacco Giuseppina Granato Stefania Montagnani Google Clotilde Castaldo Franca Di Meglio Daria Nurzynska Valeria Barbato Immacolata Belviso Mariagrazia Di Gennaro Veronica Romano Rita Miraglia Anna M Sacco Giuseppina Granato Stefania Montagnani Google Scholar Clotilde Castaldo Franca Di Meglio Daria Nurzynska Valeria Barbato Immacolata Belviso Mariagrazia Di Gennaro Veronica Romano Rita Miraglia Anna M Sacco Giuseppina Granato Stefania Montagnani PubMed Clotilde Castaldo Franca Di Meglio Daria Nurzynska Valeria Barbato Immacolata Belviso Mariagrazia Di Gennaro Veronica Romano Rita Miraglia Anna M Sacco Giuseppina Granato Stefania Montagnani Related Article in Frontiers Google Scholar PubMed Abstract Close Back to top Javascript is disabled. Please enable Javascript in your browser settings in order to see all the content on this page.
更多
查看译文
关键词
human cardiac extracellular matrix,natural scaffold,stem,cell-based
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要