The Etv1 transcription factor activity-dependently downregulates a set of genes controlling cell growth and differentiation in maturing cerebellar granule cells

Biochemical and Biophysical Research Communications(2016)

引用 6|浏览8
暂无评分
摘要
In the early postnatal period, cerebellar granule cells exhibit an activity-dependent downregulation of a set of immaturation genes involved in cell growth and migration and are shifted to establishment of a mature network formation. Through the use of a granule cell culture and both pharmacological and RNA interference (siRNA) analyses, the present investigation revealed that the downregulation of these immaturation genes is controlled by strikingly unified signaling mechanisms that operate sequentially through the stimulation of AMPA and NMDA receptors, tetrodotoxin-sensitive Na+ channels and Ca2+/calmodulin-dependent protein kinase II (CaMKII). This signaling cascade induces the Etv1 transcription factor, and knockdown of Etv1 by a siRNA technique prevented this activity-dependent downregulation of immaturation genes. Thus, taken into consideration the mechanism that controls the upregulation of maturation genes involved in synaptic formation, these results indicate that Etv1 orchestrates the activity-dependent regulation of both maturation and immaturation genes in developing granule cells and plays a key role in specifying the identity of mature granule cells in the cerebellum.
更多
查看译文
关键词
Activity-dependent regulation,Cell culture,Cerebellum,Synaptic maturation,Transcriptional regulation,Etv1
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要