Upregulated expression of Nogo-A and NgR in an experimental model of focal microgyria regulates the migration, proliferation and self-renewal of subventricular zone neural progenitors.

Biochemical and Biophysical Research Communications(2016)

引用 5|浏览33
暂无评分
摘要
Nogo-A and its receptor (NgR) were first described as myelin-associated inhibitors of neuronal regeneration in response to injury. In recent years, knowledge about the important role of the Nogo-A protein in several neuronal pathologies has grown considerably. Here, we employed a neonatal cortex freeze-lesion (NFL) model in neonatal rats and measured the expression of Nogo-A and NgR in the resulting cerebrocortical microdysgenesis 5–75 days after freezing injury. We observed marked upregulation of Nogo-A and NgR in protein levels. Furthermore, the migration of neural precursor cells (NPCs) derived from the subventricular zone (SVZ) toward the sits of injury was perturbed by treatment of NgR antagonist peptide NEP1-40. In vitro analysis showed that the knockdown of NgR by lentivirus-delivered siRNA promoted in axonal regeneration and SVZ-derived neural stem cell/progenitor cell (SVZ-NPCs) adhesion and migration, findings which were similar to the effects of NEP1-40. Taken together, our results indicate an important role for NgR in regulating the physiological processes of SVZ-NPCs. The observation of upregulated Nogo-A/NgR in lesion sites in the NFL model suggest that the effects of the perturbed Nogo-A are a key feature during the development and/or the progression of cortical malformation.
更多
查看译文
关键词
Nogo-A,Nogo receptor,Neonatal cortex freeze-lesion,Neural precursor cells,Focal cortical dysplasia,Subventricular zone
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要