Progress in the Development and Construction of a 32-T Superconducting Magnet

IEEE Transactions on Applied Superconductivity(2016)

引用 156|浏览34
暂无评分
摘要
The 32-T superconducting magnet is envisioned as a 15-T low-temperature superconductor (LTS) magnet combined with a separately powered REBCO high-temperature superconductor (HTS) insert configured as two coil stacks generating 17 T. Progress was made in all aspects of this project and is reported in this work. The design concept, which has been quite stable, is presented, as well as key elements from recent developments such as increased voltage standoff requirements. In both factory testing and installation at the NHMFL, the 15-T/250-mm-bore outer magnet built by Oxford Instruments met all specifications, including a ramp time of 1 h to full field. The test protocol included a deliberately induced full-field quench, releasing 7 MJ. After the helium level recovered, the magnet was ramped again in 1 h to full field, demonstrating full recovery. Helium boiloffs during normal operation and quench were observed, as well as the current and field decay during quench. The latter information serves as one of many inputs for the numerical quench code developed specifically to model quench in coupled LTS-HTS coils. Results from the 32-T quench analysis and implications for quench protection are summarized. All HTS conductor lengths were subjected to an extensive quality assurance (QA) protocol, and SuperPower has now delivered all required conductor lengths within specifications. A summary of the QA data and its implications are presented. The prototype coils, which are very similar in design to the 32-T REBCO coils but of reduced height, have now been impregnated with paraffin to address winding motion observed in previous testing. The prototype test protocol includes a study of the effectiveness of the quench heaters in the HTS coils in both a constant background field as provided by the actual 15-T LTS outer magnet for 32 T and, uniquely, in case the outer magnet is deliberately quenched.
更多
查看译文
关键词
HTS magnet,LTS magnet,quench protection
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要