Characterization of the microstructure of tin-silver lead free solder

Journal of Alloys and Compounds(2016)

Cited 13|Views17
No score
Abstract
Reliability and lifetime are the two most relevant design considerations in the production of safety critical assemblies. For example in a modern automobile dozens of electronic assemblies are integrated in which thousands of solder joints are mounting the electronic components to the printed circuit boards. There exists no standardised and universal observation method for characterising the fine microstructure of such solder joints. Previously we have developed a new method for the quantitative characterization of lead-free solder alloys and in present study the validity of the proposed method is demonstrated. Microstructure of Sn-3.5Ag lead free solder alloy was investigated by electrochemical impedance spectroscopy. Solder samples were solidified with different cooling rates in order to induce differences in the microstructure. Microstructure of the ingots was revealed by selective electrochemical etching. Electrochemical impedance spectra (EIS) were measured before and after the selective etching process. The complex impedance spectra contain information about microstructure of the solder alloys. Comparison and modelling of two EIS spectra allowed obtaining a characteristic parameter of surface structure of the etched specimens. The EIS measurements were complemented with small angle neutron scattering measurements and scanning electron microscopy, in order to correlate the EIS parameter with the magnitude of the interface of the β-Sn and Ag3Sn phases.
More
Translated text
Key words
Intermetallics,Rapid-solidification,Quenching,Microstructure,Electrochemical impedance spectroscopy
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined