Fringe field simulations of a non-scaling FFAG accelerator

arXiv: Accelerator Physics(2012)

引用 22|浏览22
暂无评分
摘要
Fixed-field Alternating Gradient (FFAG) accelerators offer the potential of high-quality, moderate energy ion beams at low cost. Modeling of these structures is challenging with conventional beam tracking codes because of the large radial excursions of the beam and the significance of fringe field effects. Numerous tune resonances are crossed during the acceleration, which would lead to beam instability and loss in a storage ring. In a non-scaling FFAG, the hope is that these resonances can be crossed sufficiently rapidly to prevent beam loss. Simulations are required to see if this is indeed the case. Here we simulate a non-scaling FFAG which accelerates protons from 31 to 250 MeV. We assume only that the bending magnets have mid-plane symmetry, with specified vertical bending field in the mid-plane (y=0). The magnetic field can be obtained everywhere using a power series expansion, and we develop mathematical tools for calculating this expansion to arbitrary order when the longitudinal field profile is given by an Enge function. We compare the use of a conventional hard-edge fringe with a more accurate, soft-edge fringe field model. The tune 1/3 resonance is the strongest, and crossing it in the hard-edge fringe model results in a 21% loss of the beam. Using the soft-edge fringe model the beam loss is less than 6%.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要